Redundancy and the Evolution of Cis-Regulatory Element Multiplicity

نویسندگان

  • Tiago Paixão
  • Ricardo B. R. Azevedo
چکیده

The promoter regions of many genes contain multiple binding sites for the same transcription factor (TF). One possibility is that this multiplicity evolved through transitional forms showing redundant cis-regulation. To evaluate this hypothesis, we must disentangle the relative contributions of different evolutionary mechanisms to the evolution of binding site multiplicity. Here, we attempt to do this using a model of binding site evolution. Our model considers binding sequences and their interactions with TFs explicitly, and allows us to cast the evolution of gene networks into a neutral network framework. We then test some of the model's predictions using data from yeast. Analysis of the model suggested three candidate nonadaptive processes favoring the evolution of cis-regulatory element redundancy and multiplicity: neutral evolution in long promoters, recombination and TF promiscuity. We find that recombination rate is positively associated with binding site multiplicity in yeast. Our model also indicated that weak direct selection for multiplicity (partial redundancy) can play a major role in organisms with large populations. Our data suggest that selection for changes in gene expression level may have contributed to the evolution of multiple binding sites in yeast. We conclude that the evolution of cis-regulatory element redundancy and multiplicity is impacted by many aspects of the biology of an organism: both adaptive and nonadaptive processes, both changes in cis to binding sites and in trans to the TFs that interact with them, both the functional setting of the promoter and the population genetic context of the individuals carrying them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast.

Transcriptional modules of coregulated genes play a key role in regulatory networks. Comparative studies show that modules of coexpressed genes are conserved across taxa. However, little is known about the mechanisms underlying the evolution of module regulation. Here, we explore the evolution of cis-regulatory programs associated with conserved modules by integrating expression profiles for tw...

متن کامل

Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila.

The regulation of development by Hox proteins is important in the evolution of animal morphology, but how the regulatory sequences of Hox-regulated target genes function and evolve is unclear. To understand the regulatory organization and evolution of a Hox target gene, we have identified a wing-specific cis-regulatory element controlling the knot gene, which is expressed in the developing Dros...

متن کامل

Dispensability of mammalian DNA.

In the lab, the cis-regulatory network seems to exhibit great functional redundancy. Many experiments testing enhancer activity of neighboring cis-regulatory elements show largely overlapping expression domains. Of recent interest, mice in which cis-regulatory ultraconserved elements were knocked out showed no obvious phenotype, further suggesting functional redundancy. Here, we present a globa...

متن کامل

Ancestral resurrection of the Drosophila S2E enhancer reveals accessible evolutionary paths through compensatory change.

Upstream regulatory sequences that control gene expression evolve rapidly, yet the expression patterns and functions of most genes are typically conserved. To address this paradox, we have reconstructed computationally and resurrected in vivo the cis-regulatory regions of the ancestral Drosophila eve stripe 2 element and evaluated its evolution using a mathematical model of promoter function. O...

متن کامل

Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty.

The discovery that most regulatory genes were conserved among animals from distant phyla challenged the ideas that gene duplication and divergence of homologous coding sequences were the basis for major morphological changes in metazoan evolution. In recent years, however, the interest for the roles, conservation and changes of non-coding sequences grew-up in parallel with genome sequencing pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010